Deformation modeling of remote handling EAMA robot by recurrent neural networks

Author:

Zhang Tao,Song Yuntao,Wu Huapeng,Handroos Heikki,Cheng Yong,Zhang Xuanchen

Abstract

Purpose Remote handling (RH) manipulators have been widely studied for maintenance tasks in fusion reactors. Those tasks always require heavy load, high accuracy and large work space for manipulators. Traditionally, the maintenance of fusion devices always depends on manual RH. With the development of calculating ability, the intelligent automatic maintenance makes it possible for a fusion device instead of the previous manual operation. As the flexibility of arm and the deformation of manipulator will cause problems, which are mainly inaccuracy and lower efficiency. This paper aims to study an effective way to promote the arm behavior to solve these problems. Design/methodology/approach By making use of the experimental advanced superconducting tokamak articulated maintenance arm as a platform, a series of experiments is designed to measure errors of kinematics and to collect the database of the flexible arm. Through studying the data and the arm structure, recurrent neural network (RNN) method was adopted to estimate the deformation of flexible arm and eventually compensate deformation in robot control to achieve higher accuracy. Findings By means of delicate RNN modeling, errors of kinematics have been reduced to a smaller order than the RH mode. This intelligent maintenance method will also reduce complexity of operations in maintenance. Originality/value This paper presents the use of an artificial intelligent algorithm to solve a nonlinear deformation problem of the flexible arm. The results demonstrate that it is efficient in dealing with this problem in fusion application. The RNN’s successful application has also shown that intelligent algorithms can be widely applied in fusion maintenance.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference20 articles.

1. Short-term memory for serial order: a recurrent neural network model;Psychological Review,2006

2. Articulated inspection arm for ITER, a demonstration in the tore supra tokamak,2003

3. Approximation of elastic deformations of robot arms using neural networks,1997

4. Payload-invariant servo control using artificial neural networks,1990

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3