Enhancing project portfolio selection for construction holding firms: a multi-objective optimization framework with risk analysis

Author:

Ghanbari MiladORCID,Olaikhan Asaad Azeez Jaber,Skitmore MartinORCID

Abstract

PurposeThis study aims to develop a framework for the optimal selection of construction project portfolios for a construction holding company. The objective is to minimize risks, align the portfolio with the organization’s strategic objectives and maximize portfolio returns and net present value (NPV).Design/methodology/approachThe study develops a multi-objective genetic algorithm approach to optimize the portfolio selection process. The construction company’s portfolio is categorized into four main classes: water projects, building projects, road projects and healthcare projects. A mathematical model is developed, and a genetic algorithm is implemented using MATLAB software. Data from a construction holding company in Iraq, including budget and candidate projects, are used as a case study.FindingsThe case study results show that out of the 34 candidate projects, 13 have been recommended for execution. These selected projects span different portfolio classes, such as water, building, road and healthcare projects. The total budget required for executing the selected projects is $64.55m, within the organization’s budget limit. The convergence diagram of the genetic algorithm indicates that the best solutions were achieved around generation 20 and further improved from generation 60 onwards.Practical implicationsThe study introduces a specialized framework for project portfolio management in the construction industry, focusing on risk management and strategic alignment. It uses a multi-objective genetic algorithm and risk analysis to minimize risks, increase returns and improve portfolio performance. The case study validates its practical applicability.Originality/valueThis study contributes to project portfolio management by developing a framework specifically tailored for construction holding companies. Integrating a multi-objective genetic algorithm allows for a comprehensive optimization process, taking into account various objectives, including portfolio returns, NPV, risk reduction and strategic alignment. The case study application provides practical insights and validates the effectiveness of the proposed framework in a real-world setting.

Publisher

Emerald

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3