Author:
Lu Tien‐Fu,Handley Daniel C.,Kuan Yong Yuen,Eales Craig
Abstract
Micromanipulation has enabled numerous technological breakthroughs in recent years, from advances in biotechnology to microcomponent assembly. Micromotion devices commonly use piezoelectric actuators (PZT) together with compliant mechanisms to provide fine motions with position resolution in the nanometre or even sub‐nanometre range. Many multiple degree of freedom (DOF) micromotion stages have parallel structures due to better stiffness and accuracy than serial structures. This paper presents the development of a three‐DOF compliant micromotion stage with flexure hinges and parallel structure for applications requiring motions in micrometres. The derivation of a simple linear kinematic model of the compliant mechanism is presented and simulation results before and after calibration are compared with results from finite element (FE) modeling and experiments. The position control system, which uses an experimentally determined constant‐Jacobian, and its performance are also presented and discussed.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献