Abstract
PurposeHigh-resolution remote sensing images possess a wealth of semantic information. However, these images often contain objects of different sizes and distributions, which make the semantic segmentation task challenging. In this paper, a bidirectional feature fusion network (BFFNet) is designed to address this challenge, which aims at increasing the accurate recognition of surface objects in order to effectively classify special features.Design/methodology/approachThere are two main crucial elements in BFFNet. Firstly, the mean-weighted module (MWM) is used to obtain the key features in the main network. Secondly, the proposed polarization enhanced branch network performs feature extraction simultaneously with the main network to obtain different feature information. The authors then fuse these two features in both directions while applying a cross-entropy loss function to monitor the network training process. Finally, BFFNet is validated on two publicly available datasets, Potsdam and Vaihingen.FindingsIn this paper, a quantitative analysis method is used to illustrate that the proposed network achieves superior performance of 2–6%, respectively, compared to other mainstream segmentation networks from experimental results on two datasets. Complete ablation experiments are also conducted to demonstrate the effectiveness of the elements in the network. In summary, BFFNet has proven to be effective in achieving accurate identification of small objects and in reducing the effect of shadows on the segmentation process.Originality/valueThe originality of the paper is the proposal of a BFFNet based on multi-scale and multi-attention strategies to improve the ability to accurately segment high-resolution and complex remote sensing images, especially for small objects and shadow-obscured objects.
Reference49 articles.
1. SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling,2015
2. Semantic image segmentation with deep convolutional nets and fully connected CRFs,2014
3. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs;IEEE Transactions on Pattern Analysis and Machine Intelligence,2016
4. Rethinking atrous convolution for semantic image segmentation,2017
5. Encoder-decoder with atrous separable convolution for semantic image segmentation,2018
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献