Tribological properties of zirconium phosphate-quinoline compound as an additive in lithium grease

Author:

Niu Wenxing,Liu Lei,Xu Hong,Dong Jinxiang

Abstract

Purpose The purpose of this paper is to study the tribological properties of (C9H8N)4(H2O)4[Zr8P12O40(OH)8F8] (designated as ZrPOF-Q1) used as an additive in lithium grease. Design/methodology/approach The tribological properties of ZrPOF-Q1 as an additive in the lithium grease were evaluated with a four-ball tester. To understand the lubrication mechanism, post-test characterization of the contact tracks was performed via three-dimensional (3D) optical profiler, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Findings The results reveal that ZrPOF-Q1 exhibits good performance in anti-wear, friction-reducing and load-carrying capacity. The action mechanism is estimated through analysis of the worn surface with SEM, EDS and 3D. The results indicate that ZrPOF-Q1 can adhere on the substrate, protecting the rubbed surfaces from a direct contact, even under high load for a long-time test. ZrPOF-Q1 can adhere on the substrate, protecting the rubbed surfaces from a direct contact, even under high load for a long-time test. Originality/value This work illustrates that ZrPOF-Q1 as an additive can improve lubricating performance. These tribological properties make ZrPOF-Q1 a promising candidate for lubricant additive.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3