Frictional characteristic of sintered iron in high temperature

Author:

Wang Yanzhong,Guo Chao

Abstract

Purpose This paper aims to study the change rule of sintered iron friction properties under high temperature and establish the model to predict the friction coefficient. Design/methodology/approach The morphological measurements of sintered iron material with four different oxidation degrees are carried out. A prediction model of friction coefficient in high temperature oxide growth stage for sintered iron material is established based on the theory of flash temperature and adhesion friction. The relationship between friction coefficient and the key parameters is found through the test fitting. Findings The surface topography changes with oxidative wear. The wear debris will be compacted and sintered again to form a composite oxide layer with the temperature increasing. The validity and accuracy of proposed model are tested using the friction coefficient and temperature experiments. Results are in reasonable agreement with those obtained using values of load commonly used. Originality/value The significance lies in the change mechanism of high temperature friction characteristic is clarified. Three friction stages related to temperature of dry friction are put forward for sintered iron, and a meaningful reference is provided by the established model for high-temperature performance design of sintered iron friction material.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference18 articles.

1. Contact and rubbing of flat surface;Journal of Applied Physics,1953

2. The temperature of rubbing surface;Wear,1958

3. The conduction of heat from sliding interfaces;International Journal of Heat and Mass Transfer,1970

4. Surface temperature under extreme pressure lubricating conditions,1937

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frictional characteristics of thin-walled tubes in liquid impact forming;Industrial Lubrication and Tribology;2019-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3