Author:
Sanchez Ramirez Alberto,Islán Marcos Manuel Enrique,Blaya Haro Fernando,D’Amato Roberto,Sant Rodolfo,Porras José
Abstract
Purpose
The purpose of this paper is to analyze the aerodynamic improvements obtained in a wing section with a NACA 0018 airfoil manufactured using the fused deposition modeling (FDM) technique with regard to a smooth surface made by milling. The creation of micro-riblets on the surface of the airfoil, due to the deposition of the material layer by layer, improves the general aerodynamic performance of the parts, provided that the riblets are parallel to the flow line. The incidence of the thickness of the thread deposited in each layer – to be the variable on which the geometry of the riblets is based – was studied.
Design/methodology/approach
The wing section was designed using 3D software. Three different models were designed by rapid prototyping, using additive and subtractive manufacturing. Two of the profiles were manufactured using FDM varying the thickness of the layer to be able to compare the aerodynamic improvements. The third model was manufactured using a subtractive rapid prototyping machine generating a smooth surface profile. These three models were tested inside the wind tunnel to be able to quantify the aerodynamic efficiency according to the geometry and the riblets size.
Findings
The manufacture of an aerodynamic profile using FDM provides, in addition to the lightness and the ability to design parts with complex geometries, an improvement in the aerodynamic efficiency of 10 per cent compared with profiles with a smooth surface.
Practical implications
With the aerodynamic advantage gained through the use of FDM positions, the additive manufacturing serves as an excellent alternative for the manufacture of lightweight aerodynamic parts, with low structural loading and with low Reynolds number (∼5·105). This technological advantage would be applied to the UAV (unmanned aerial vehicle) industry.
Originality/value
The study carried out in this article demonstrates that the use of FDM as a manufacture process of end-used parts that are subject to movement generates an additional advantage that had not been considered. The additive manufacturing allows us to directly manufacture riblets by creating the necessary surface so as to reduce the aerodynamic drag.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference29 articles.
1. Airfoil Tools (2018), “Airfoil tools”, Airfoil Tools, available at: http://airfoiltools.com/index (accessed 11 February 2019).
2. Drag reduction characteristics and flow field analysis of textured surface;Friction,2016
3. The viscous flow on surfaces with longitudinal ribs;Journal of Fluid Mechanics,1989
4. A study of the state-of-the-art rapid prototyping technologies;The International Journal of Advanced Manufacturing Technology,1998
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献