Drag reduction characteristics and flow field analysis of textured surface

Author:

Bai Qingshun,Bai Jinxuan,Meng Xiangpan,Ji Chengcheng,Liang Yingchun

Abstract

Abstract A textured surface with a micro-groove structure exerts a distinct characteristic on drag reduction behavior. The fluid dynamic models of four textured surfaces are constructed in various profile geometries. Computational fluid dynamics is used to study the friction factors and drag reduction properties with various flow speeds on the textured surfaces. The friction coefficient varieties in the interface between the fluid and the textured surface are examined according to the simulation of the four geometries with V-shaped, saw tooth, rectangular, and semi-circular sections. The drag reduction efficiencies decrease with the increase in water velocity while it is less than a certain value. Moreover, the simulation results of the velocity, shear stress, energy, and turbulence effect on the V-shaped groove surface are presented in comparison with those of the smooth surface to illustrate the drag reduction mechanism. The results indicate that the peaks of the V-shaped grooves inhibit the lateral movement of the turbulent flow and generate the secondary vortex, which plays a key role in the impeding momentum exchange, thereby decreasing turbulent bursting intensity and reducing shear stress in the near-wall flow field. The kinetic energy and turbulence analysis shows that the vortex in the near-wall flow field on the textured surface is more stable compared to that on the smooth surface.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3