Author:
Chand Ramesh,Sharma Vishal S.,Trehan Rajeev,Gupta Munish Kumar
Abstract
Purpose
A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine failure, and there may be severe safety issues. All the safety issues and self-loosen are directly and indirectly the functions of the accuracy and precision of the fabricated nut and bolt. Recent advancements in three-dimensional (3D) printing technologies now allow for the production of intricate components. These may be used technologies such as 3D printed bolts to create fasteners. This paper aims to investigate dimensional precision, surface properties, mechanical properties and scanning electron microscope (SEM) of the component fabricated using a multi-jet 3D printer.
Design/methodology/approach
Multi-jet-based 3D printed nut-bolt is evaluated in this paper. More specifically, liquid polymer-based nut-bolt is fabricated in sections 1, 2 and 3 of the base plate. Five nuts and bolts are fabricated in these three sections.
Findings
Dimensional inquiry (bolt dimension, general dimensions’ density and surface roughness) and mechanical testing (shear strength of nut and bolt) were carried out throughout the study. According to the ISO 2768 requirements for the General Tolerances Grade, the nut and bolt’s dimensional examination (variation in bolt dimension, general dimensions) is within the tolerance grades. As a result, the multi-jet 3D printing (MJP)-based 3D printer described above may be used for commercial production. In terms of mechanical qualities, when the component placement moves from Sections 1 to 3, the density of the manufactured part decreases by 0.292% (percent) and the shear strength of the nut and bolt decreases by 30%. According to the SEM examination, the density of the River markings, sharp edges, holes and sharp edges increased from Sections 1 to 3, which supports the findings mentioned above.
Originality/value
Hence, this work enlightens the aspects causing time lag during the 3D printing in MJP. It causes variation in the dimensional deviation, surface properties and mechanical properties of the fabricated part, which needs to be explored.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference42 articles.
1. “sculpteo” (2020), 3D Printers, available at: www.sculpteo.com/en/3d-printing/3d-printing-technologies/
2. Material selection guide for ProJet® MJP 2500 and 2500 Plus;Systems Inc,2020
3. On design for additive manufacturing: evaluating geometrical limitations;Rapid Prototyping Journal,2015
4. Mechanical and morphological characterization of spherical cell porous structures manufactured using FDM process;Engineering Fracture Mechanics,2019
5. Development of a multi-jet polishing process for inner surface finishing;Precision Engineering,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献