Author:
Budzik Grzegorz,Dziubek Tomasz,Przeszłowski Łukasz Paweł,Sobolewski Bartłomiej,Dębski Mariusz,Gontarz Małgorzata Ewa
Abstract
Purpose
Manufacturing of products loaded with torque in an incremental process should take into account the strength in relation to the internal structure of the details. Incremental processes allow for obtaining various internal structures, both in the production process itself and as a result of designing a three-dimensional computer-aided design model with programmable strength. Finite element analysis (FEA) is often used in the modeling process, especially in the area of topological optimization. There is a lack of data for numerical simulation processes, especially for the design of products loaded with torque and manufactured additive manufacturing (AM). The purpose of this study is to present the influence of the internal structure of samples produced in the material extrusion (MEX) technology on the tested parameters in the process of unidirectional torsion and to present the practical application of the obtained results on the example of a spline connection.
Design/methodology/approach
The work involved a process of unidirectional torsion of samples with different internal structures, produced in the MEX technology. The obtained results allowed for the FEA of the spline connection, which was compared with the test of unidirectional torsion of the connection.
Findings
The performance of the unidirectional torsion test and the obtained results allowed us to determine the influence of the internal structure and its density on the achieved values of the tested parameters of the analyzed prototype materials. The performed FEA of the spline connection reflects the deformation of the produced connection in the unidirectional torsion test.
Originality/value
There are no standards for the torsional strength of elements manufactured from polymeric materials using MEX methods, which is why the industry often does not use these methods due to the need to spend time on research, which is associated with high costs. In addition, the industry is vary of unknown solutions and limits their use. Therefore, it is important to determine, among others, the strength parameters of components manufactured using incremental methods, including MEX, so that they can be widely used because of their great potential and thus gain trust among the recipient market. In addition, taking into account the different densities of the applied filling structure of the samples made of six prototype materials commonly available from manufacturers allowed us to determine its effect on the torsional strength. The presented work can be the basis for constructors dealing with the design of elements manufactured in the MEX technology in terms of torsional strength. The obtained results also complement the existing material base in the FEA software and perform the strength analysis before the actual details are made to verify the existing irregularities that affect the strength of the details. The analysis of unidirectional torsion made it possible to supplement the material cards, which often refer to unprocessed material, e.g. in MEX processes.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference54 articles.
1. A critical review of 3D printing and digital manufacturing in construction engineering;Rapid Prototyping Journal,2022
2. Effect of infill density and infill pattern on the mechanical properties of 3D printed PLA parts;Materials Today: Proceedings,2022
3. Torsion analysis of the anisotropic behavior of FDM technology;The International Journal of Advanced Manufacturing Technology,2018
4. Consistency analysis of mechanical properties of elements produced by FDM additive manufacturing technology;Materia (Rio De Janeiro,2018
5. Effect of FDM infill patterns on mechanical properties;Polymer Testing,2022
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献