Modeling porous structures with fractal rough topography based on triply periodic minimal surface for additive manufacturing

Author:

Xu Zhijia,Wang Qinghui,Li Jingrong

Abstract

Purpose The purpose of this paper is to develop a general mathematic approach to model the microstructures of porous structures produced by additive manufacturing (AM), which will result in fractal surface topography and higher roughness that have greater influence on the performance of porous structures. Design/methodology/approach The overall shapes of pores were modeled by triply periodic minimal surface (TPMS), and the micro-roughness details attached to the overall pore shapes were represented by Weierstrass–Mandelbrot (W-M) fractal representation, which was integrated with TPMS along its normal vectors. An index roughly reflecting the irregularity of fractal TPMS was proposed, based on which the influence of the fractal parameters on the fractal TPMS was qualitatively analyzed. Two complex samples of real porous structures were given to demonstrate the feasibility of the model. Findings The fractal surface topography should not be neglected at a micro-scale level. In addition, a decrease in the fractal dimension Ds may exponentially make the topography rougher; an increase in the height-scaling parameter G may linearly increase the roughness; and the number of the superposed ridges has no distinct influence on the topography. Furthermore, the synthesis method is general for all implicit surfaces. Practical implications The method provides an alternative way to shift the posteriori design paradigm of porous media to priori design mode through numeric simulation. Therefore, the optimization of AM process parameters, as well as the porous structure, can be potentially realized according to specific functional requirement. Originality/value The synthesis of TPMS and W-M fractal geometry was accomplished efficiently and was general for all implicit freeform surfaces, and the influence of the fractal parameters on the fractal TPMS was analyzed more systematically.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference53 articles.

1. Finite element predictions of effective multifunctional properties of interpenetrating phase composites with novel triply periodic solid shell architectured reinforcements;International Journal of Mechanical Sciences,2015

2. A multivariate Weiestrass-Mandelbrot function;Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society,1985

3. 3D roughness profile model in fused deposition modelling;Rapid Prototyping Journal,2013

4. Role of surface roughness characterized by fractal geometry on laminar flow in microchannels;Physical Review E,2009

5. Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg Powder;International Journal of Machine Tools & Manufacture,2015

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3