Computational Model for Tree-like Fractals Used as Internal Structures for Additive Manufacturing Parts

Author:

Stanciu Birlescu Anca1,Balc Nicolae1ORCID

Affiliation:

1. Department of Manufacturing Engineering, Faculty of Industrial Engineering, Robotics and Production Management, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania

Abstract

It is well established that the introduction of additive manufacturing in various domains has produced significant technological leaps due to the advantages over other manufacturing techniques. Furthermore, additive manufacturing allows the design of parts with complex internal structures (e.g., lattice, honeycomb) to achieve lightweight or other mechanical properties. This paper presents a computational model (integrated into a programable algorithm) designed to generate complex internal structures, using tree-like fractals, for components (mechanical parts) whose designs are achievable by additive manufacturing. The computational model is presented in detail, starting from the mathematical definition and the properties of the proposed tree-like fractals. The fractal data are computed and arranged unequivocally using table representations. Based on the fractal data, the structures are generated inside CAD parts (which are given as inputs in the algorithm). The proposed computational method is applied in different case studies to illustrate their functionality. The generated CAD components (with fractal internal structures) are intended for manufacturing (using selective laser melting) and laboratory (mechanical) testing and for finite element analysis, which in turn can validate the use of tree-like fractals as interior structures for mechanical components.

Funder

Entrepreneurial competences and excellence research in doctoral and postdoctoral programs—ANTREDOC

European Social Fund financing agreement

HORIZON 2020—DiCoMI Project

Directional Composites through Manufacturing Innovation

European Development Fund and the Romanian Government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3