Author:
Jain Vineet,Soni Vimlesh Kumar
Abstract
PurposeThe purpose of this paper is to identify the flexible manufacturing system performance variables and analyze the interactions among these variables. Interpretive structural modeling (ISM) has been reported for this but no study has been done regarding the interaction of its variables. Therefore, fuzzy TISM (total ISM) has been applied to deduce the relationship and interactions between the variables and driving and dependence power of these variables are examined by fuzzy MICMAC.Design/methodology/approachFuzzy TISM and fuzzy MICMAC analysis have been applied to deduce the relationship and interactions among the variables and driving and dependence power of these variables are examined by fuzzy MICMAC.FindingsIn total, 15 variables have been identified from the extensive literature review. The result showed that automation, use of automated material handling, an effect of tool life and rework percentage have high driving power and weak dependence power in the fuzzy TISM model and fuzzy MICMAC analysis. These are also at the lowest level in the hierarchy in the fuzzy TISM model.Originality/valueFuzzy TISM model has been suggested for manufacturing industries with fuzzy MICMAC analysis. This proposed approach is a novel attempt to integrate TISM approach with the fuzzy sets. The integration of TISM with fuzzy sets provides flexibility to decision-makers to further understand the level of influences of one criterion over another, which was earlier present only in the form of binary (0, 1) numbers; 0 represents no influence and 1 represents influence.
Subject
Management Science and Operations Research,Strategy and Management,General Decision Sciences
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献