Aerodynamic performance enhancement of an Airfoil using trapezoidal vortex generators

Author:

Himo Rawad,Bou-Mosleh Charbel,Habchi Charbel

Abstract

Purpose Flow separation on wings, blades and vehicles can be delayed or even suppressed by the use of vortex generators (VG). Numerous studies, documented in the literature, extensively describe the performance of triangular and rectangular VG winglets. This paper aims to focus on the use of non-conventional VG shapes, more specifically an array of trapezoildal-perforated VG tabs. Design/methodology/approach In this study, computational fluid dynamic simulations are performed on an inline array of trapezoidal VG with various dimensions and inclination angles, in addition to considering perforations in the VG centers. The methodology of the present numerical study is validated with experimental data from the literature. Findings The performance and the associated flow structures of these tested non-conventional VG are compared to classical triangular winglets. For the proposed non-conventional trapezoidal VG, at the onset of stall, a 21% increase of lift over drag on the airfoil is observed. The trapezoidal VG enhancement is also witnessed during stall where the lift over drag ratio is increased by 120% for the airfoil and by 10% with respect to the triangular winglets documented in the literature. Originality/value The originality of this paper is the use of non-conventional vortex generator shape to enhance lift over drag coefficient using three-dimensional numerical simulations.

Publisher

Emerald

Subject

Aerospace Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3