Flow separation control of NACA-2412 airfoil with bio-inspired nose

Author:

Raj Mohamed Mohamed Arif,Guven Ugur,Yadav Rajesh

Abstract

Purpose The purpose of this paper is to achieve an optimum flow separation control over the airfoil using passive flow control method by introducing bio-inspired nose near the leading edge of the NACA 2412 airfoil. Design/methodology/approach Two distinguished methods have been implemented on the leading edge of the airfoil: forward facing step, which induces multiple accelerations at low angle of attack, and cavity/backward facing step, which creates recirculating region (axial vortices) at high angle of attack. Findings The porpoise airfoil (optimum bio-inspired nose airfoil) delays the flow separation and improves the aerodynamic efficiency by increasing the lift and decreasing the parasitic drag. The maximum increase in aerodynamic efficiency is 22.4 per cent, with an average increase of 8.6 per cent at all angles of attack. Research limitations/implications The computational analysis has been done for NACA 2412 airfoil at low subsonic speed. Practical implications This design improves the aerodynamic performance and increases structural strength of the aircraft wing compared to other conventional high-lift devices and flow-control devices. Originality/value Different bio-inspired nose designs which are inspired by the cetacean species have been analysed for NACA 2412 airfoil, and optimum nose design (porpoise airfoil) has been found.

Publisher

Emerald

Subject

Aerospace Engineering

Reference26 articles.

1. Numerical analysis of wind turbine airfoil aerodynamic performance with leading edge bump,2015

2. Numerical investigation of an airfoil with a gurney flap;Aircraft Design,1998

3. Effects of modifications to the leading-edge region on the stalling characteristics of the NACA 631-012 airfoil section,1950

4. Computational investigation of flow separation over NACA 23024 airfoil at 6 million free stream Reynolds number using k-epsilon turbulence model;Materials Today: proceedings,2018

5. Review of research on low-profile vortex generators to control boundary-layer separation;Progress in Aerospace Sciences,2002

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3