Aircraft parameter estimation using ELM network

Author:

Verma Hari Om,Peyada Naba Kumar

Abstract

Purpose The purpose of this paper is to investigate the estimation methodology with a highly generalized cost-effective single hidden layer neural network. Design/methodology/approach The aerodynamic parameter estimation is a challenging research area of aircraft system identification, which finds various applications such as flight control law design and flight simulators. With the availability of the large database, the data-driven methods have gained attention, which is primarily based on the nonlinear function approximation using artificial neural networks. A novel single hidden layer feed-forward neural network (FFNN) known as extreme learning machine (ELM), which overcomes the issues such as learning rate, number of epochs, local minima, generalization performance and computational cost, as encountered in the conventional gradient learning-based FFNN has been used for the nonlinear modeling of the aerodynamic forces and moments. A mathematical formulation based on the partial differentiation is proposed to estimate the aerodynamic parameters. Findings The real flight data of longitudinal and lateral-directional motion have been considered to estimate their respective aerodynamic parameters using the proposed methodology. The efficacy of the estimates is verified with the results obtained through the conventional parameter estimation methods such as the equation-error method and filter-error method. Originality/value The present study is an outcome of the research conducted on ELM for the estimation of aerodynamic parameters from the real flight data. The proposed method is capable to estimate the parameters in the presence of noise.

Publisher

Emerald

Subject

Aerospace Engineering

Reference38 articles.

1. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network;IEEE Transactions on Information Theory,1998

2. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter;Aerospace Science and Technology,2010

3. Neural partial differential method for extracting aerodynamic derivatives from flight data;Journal of Guidance, Control, and Dynamics,2010

4. Parameter estimation of UAV from flight data using neural network;Aircraft Engineering and Aerospace Technology,2018

5. Sensitivity analysis using neural network for estimating aircraft stability and control derivatives,2007

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3