Parameter estimation of UAV from flight data using neural network

Author:

R. Dhayalan,Saderla Subrahmanyam,Ghosh Ajoy Kanti

Abstract

Purpose The purpose of this paper is to present the application of the neural-based estimation method, Neural-Gauss-Newton (NGN), using the real flight data of a small unmanned aerial vehicle (UAV). Design/methodology/approach The UAVs in general are lighter in weight and their flight is usually influenced by the atmospheric winds because of their relatively lower cruise speeds. During the presence of the atmospheric winds, the aerodynamic forces and moments get modified significantly and the accurate mathematical modelling of the same is highly challenging. This modelling inaccuracy during parameter estimation is routinely treated as the process noise. Furthermore, because of the limited dimensions of the small UAVs, the measurements are usually influenced by the disturbances caused by other subsystems. To handle these measurement and process noises, the estimation methods based on neural networks have been found reliable in the manned aircrafts. Findings Six sets of compatible longitudinal flight data of the designed UAV have been chosen to estimate the parameters using the NGN method. The consistency in the estimates is verified from the obtained mean and the standard deviation and the same has been validated by the proof-of-match exercise. It is evident from the results that the NGN method was able to perform on a par with the conventional maximum likelihood method. Originality/value This is a partial outcome of the research carried out in estimating parameters from the UAVs.

Publisher

Emerald

Subject

Aerospace Engineering

Reference32 articles.

1. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects,2004

2. Stochastic system identification techniques,1968

3. Real-time global nonlinear aerodynamic modeling from flight data,2014

4. Wind estimation and airspeed calibration using a UAV with a single-antenna GPS receiver and pitot tube;IEEE Transactions on Aerospace and Electronic Systems,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3