Parametric model identification of delta wing UAVs using filter error method augmented with particle swarm optimisation

Author:

Samuel J J. P.ORCID,Kumar N.ORCID,Saderla S.ORCID,Kim Y.ORCID

Abstract

AbstractFrom arsenal delivery to rescue missions, unmanned aerial vehicles (UAVs) are playing a crucial role in various fields, which brings the need for continuous evolution of system identification techniques to develop sophisticated mathematical models for effective flight control. In this paper, a novel parameter estimation technique based on filter error method (FEM) augmented with particle swarm optimisation (PSO) is developed and implemented to estimate the longitudinal and lateral-directional aerodynamic, stability and control derivatives of fixed-wing UAVs. The FEM used in the estimation technique is based on the steady-state extended Kalman filter, where the maximum likelihood cost function is minimised separately using a randomised solution search algorithm, PSO and the proposed method is termed FEM-PSO. A sufficient number of compatible flight data sets were generated using two cropped delta wing UAVs, namely CDFP and CDRW, which are used to analyse the applicability of the proposed estimation method. A comparison has been made between the parameter estimates obtained using the proposed method and the computationally intensive conventional FEM. It is observed that most of the FEM-PSO estimates are consistent with wind tunnel and conventional FEM estimates. It is also noticed that estimates of crucial aerodynamic derivatives ${C_{{L_\alpha }}},\;{C_{{m_\alpha }}},\;{C_{{Y_\beta }}},\;{C_{{l_\beta }}}$ and ${C_{{n_\beta }}}$ obtained using FEM-PSO are having relative offsets of 2.5%, 1.5%, 6.5%, 3.4% and 7.6% w.r.t. wind tunnel values for CDFP, and 1.4%, 1.9%, 0.1%, 9.6% and 7.5% w.r.t. wind tunnel values for CDRW. Despite having slightly higher Cramer-Rao Lower Bounds of estimated aerodynamic derivatives using the FEM-PSO method, the simulated responses have a relative error of less than 0.10% w.r.t. measured flight data. A proof-of-match exercise is also conducted to ascertain the efficacy of the estimates obtained using the proposed method. The degree of effectiveness of the FEM-PSO method is comparable with conventional FEM.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference42 articles.

1. Introducing a combined equation/output error approach in parameter estimation;Özger;48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2010

2. [8] Khatri, S.K. Amity University Dubai, Amity University Dubai. Amity Directorate of Engineering & Technology, Institute of Electrical and Electronics Engineers. United Arab Emirates Section, and Institute of Electrical and Electronics Engineers, 2017 International Conference on Infocom Technologies and Unmanned Systems (ICTUS) (Trends and Future Directions): December 18–20, 2017: venue, Amity University Dubai, Dubai International Academic City.

3. Online system identification of mini cropped delta UAVs using flight test methods

4. [25] Schetz, J.A. , Klein, V. and Morelli, E.A. Aircraft System Identification: Theory and Practice.

5. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3