Adaptive rapid neural observer-based sensors fault diagnosis and reconstruction of quadrotor unmanned aerial vehicle

Author:

Taimoor Muhammad,Lu Xiao,Maqsood Hamid,Sheng Chunyang

Abstract

Purpose The objective of this research is to investigate various neural network (NN) observer techniques for sensors fault identification and diagnosis of nonlinear system in consideration of numerous faults, failures, uncertainties and disturbances. For the importunity of increasing the faults diagnosis and reconstruction preciseness, a new technique is used for modifying the weight parameters of NNs without enhancement of computational complexities. Design/methodology/approach Various techniques such as adaptive radial basis functions (ARBF), conventional radial basis functions, adaptive multi-layer perceptron, conventional multi-layer perceptron and extended state observer are presented. For increasing the fault detection preciseness, a new technique is used for updating the weight parameters of radial basis functions and multi-layer perceptron (MLP) without enhancement of computational complexities. Lyapunov stability theory and sliding-mode surface concepts are used for the weight-updating parameters. Based on the combination of these two concepts, the weight parameters of NNs are updated adaptively. The key purpose of utilization of adaptive weight is to enhance the detection of faults with high accuracy. Because of the online adaptation, the ARBF can detect various kinds of faults and failures such as simultaneous, incipient, intermittent and abrupt faults effectively. Results depict that the suggested algorithm (ARBF) demonstrates more confrontation to unknown disturbances, faults and system dynamics compared with other investigated techniques and techniques used in the literature. The proposed algorithms are investigated by the utilization of quadrotor unmanned aerial vehicle dynamics, which authenticate the efficiency of the suggested algorithm. Findings The proposed Lyapunov function theory and sliding-mode surface-based strategy are studied, which shows more efficiency to unknown faults, failures, uncertainties and disturbances compared with conventional approaches as well as techniques used in the literature. Practical implications For improvement of the system safety and for avoiding failure and damage, the rapid fault detection and isolation has a great significance; the proposed approaches in this research work guarantee the detection and reconstruction of unknown faults, which has a great significance for practical life. Originality/value In this research, two strategies such Lyapunov function theory and sliding-mode surface concept are used in combination for tuning the weight parameters of NNs adaptively. The main purpose of these strategies is the fault diagnosis and reconstruction with high accuracy in terms of shape as well as the magnitude of unknown faults. Results depict that the proposed strategy is more effective compared with techniques used in the literature.

Publisher

Emerald

Subject

Aerospace Engineering

Reference43 articles.

1. Fuzzy neural network-based health monitoring for HVAC system variable-air-volume unit;IEEE Transactions on Industry Applications,2016

2. Finite time position and heading tracking control of coaxial octorotor based on extended inverse multi-quadratic radial basis function network and external disturbance observer;Journal of the Franklin Institute,2019

3. An adaptive trajectory tracking control of four rotor hover vehicle using extended normalized radial basis function network;Mechanical Systems and Signal Processing,2016

4. Computationally intelligent strategies for robust fault detection, isolation, and identification of mobile robots;Neurocomputing,2016

5. Fuzzy model-based observers for fault detection in CSTR;ISA Transactions,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3