Wheel design and motion analysis of a new heavy-duty AGV in aircraft assembly lines

Author:

Jiang Junxia,Zhang Shenglin,He Yuxiao

Abstract

Purpose The flexible automatic transportation and manual assembly jobs for large aircraft components demand an automated guided vehicle (AGV) system with heavy-duty capacity and omnidirectional movability. This paper aims to propose a four driving-steering wheels-four supporting-steering wheels (4DSW-4SSW) layout plan to enhance the controllability and moving stability of AGV. Design/methodology/approach The anti-vibration structure of DS wheels and high-torque steering mechanism of SS wheels with tapered rolling bearings are rigorously designed to meet the functional requirements. Based on the specific wheel layout and vehicle dynamics, the rotational kinematic model as well as the straight and rotational dynamic models of AGV are established by the authors. To well verify the motion characteristics of wheels under heavy load in three motion states including straight motion, self-rotation and rotation around a certain point, the simulations in ADAMS and factory experiments have all been conducted. Findings Simulation results indicate that normal and friction forces of DS wheels and SS wheels are very stable except for some small oscillations, which are caused by non-center load distribution on AGV. Experimental results on driving speed of AGV have directly demonstrated that its positioning accuracy is enough for use in real aircraft assembly lines. Practical implications The designed AGV system has been applied to the final assembly line of a certain aircraft in Aviation Industry Corporation of China, Ltd, whose assembly efficiency and flexibility have been significantly improved. Originality/value A new layout plan of wheels for an omnidirectional heavy-duty AGV is proposed, which enhances the operating and moving capacity of AGV. A function of human-machine collaboration is also offered by the AGV for transporting large workpieces intelligently and economically in aerospace and other heavy industries.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference22 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and simulation study of multi-dimensional mobile robot under heavy duty working conditions;Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024);2024-06-05

2. Wheel Design and Motion Analysis of a Heavy-Duty Material Handling Robot;2023 5th International Conference on Robotics, Intelligent Control and Artificial Intelligence (RICAI);2023-12-01

3. The applicability of advanced technologies from the traditional industry to mitigate ergonomic problems in maintenance activities in the mining industry;Journal of Quality in Maintenance Engineering;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3