Who to show the ad to? Behavioral targeting in Internet advertising

Author:

Xiong Wei,Xiong Ziyi,Tian Tina

Abstract

PurposeThe performance of behavioral targeting (BT) mainly relies on the effectiveness of user classification since advertisers always want to target their advertisements to the most relevant users. In this paper, the authors frame the BT as a user classification problem and describe a machine learning–based approach for solving it.Design/methodology/approachTo perform such a study, two major research questions are investigated: the first question is how to represent a user’s online behavior. A good representation strategy should be able to effectively classify users based on their online activities. The second question is how different representation strategies affect the targeting performance. The authors propose three user behavior representation methods and compare them empirically using the area under the receiver operating characteristic curve (AUC) as a performance measure.FindingsThe experimental results indicate that ad campaign effectiveness can be significantly improved by combining user search queries, clicked URLs and clicked ads as a user profile. In addition, the authors also explore the temporal aspect of user behavior history by investigating the effect of history length on targeting performance. The authors note that an improvement of approximately 6.5% in AUC is achieved when user history is extended from 1 day to 14 days, which is substantial in targeting performance.Originality/valueThis paper confirms the effectiveness of BT on user classification and provides a validation of BT for Internet advertising.

Publisher

Emerald

Reference29 articles.

1. Unraveling the personalization paradox: the effect of information collection and trust-building strategies on online advertisement effectiveness;Journal of Retailing,2015

2. Mining advertiser-specific user behavior using adfactors,2010

3. Location-based advertising on mobile devices;Management Review Quarterly,2016

4. An approach to cover more advertisers in adwords,2015

5. Automated audience segmentation using reputation signals,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A roadmap of retargeting campaigns for SMEs: a case study;Marketing Intelligence & Planning;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3