Abstract
PurposeInfluenced by the constantly changing manufacturing environment, no single dispatching rule (SDR) can consistently obtain better scheduling results than other rules for the dynamic job-shop scheduling problem (DJSP). Although the dynamic SDR selection classifier (DSSC) mined by traditional data-mining-based scheduling method has shown some improvement in comparison to an SDR, the enhancement is not significant since the rule selected by DSSC is still an SDR.Design/methodology/approachThis paper presents a novel data-mining-based scheduling method for the DJSP with machine failure aiming at minimizing the makespan. Firstly, a scheduling priority relation model (SPRM) is constructed to determine the appropriate priority relation between two operations based on the production system state and the difference between their priority values calculated using multiple SDRs. Subsequently, a training sample acquisition mechanism based on the optimal scheduling schemes is proposed to acquire training samples for the SPRM. Furthermore, feature selection and machine learning are conducted using the genetic algorithm and extreme learning machine to mine the SPRM.FindingsResults from numerical experiments demonstrate that the SPRM, mined by the proposed method, not only achieves better scheduling results in most manufacturing environments but also maintains a higher level of stability in diverse manufacturing environments than an SDR and the DSSC.Originality/valueThis paper constructs a SPRM and mines it based on data mining technologies to obtain better results than an SDR and the DSSC in various manufacturing environments.
Subject
Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献