1. Bakshi, H.
(2011), “Framework for crawling and local event detection using twitter data”, MS, Graduate School, Rutgers The State University of New Jersey, New Brunswick, NJ, available at: http://search.proquest.com.ezproxy.lib.uwm.edu/pqdtft/docview/897902775/abstract/1351330AA0A7C13B6E2/1?accountid=15078 (accessed September 7, 2013).
2. Bollen, J.
,
Mao, H.
and
Zeng, X.
(2011), “Twitter mood predicts the stock market”,
Journal of Computational Science
, Vol. 2 No. 1, pp. 1-8.
3. Boyd, D.
(2013), “Bibliography of research on twitter & microblogging”, available at: www.danah.org/researchBibs/twitter.php (accessed July 15, 2013).
4. Boyd, D.
and
Ellison, N.
(2008), “Social network sites: definition, history, and scholarship”,
Journal of Computer-Mediated Communication
, Vol. 13 No. 1, pp. 210-230.
5. Bruns, A.
,
Burgess, J.E.
,
Crawford, K.
and
Shaw, F.
(2012), “# Qldfloods and@ QPSMedia: crisis communication on Twitter in the 2011 south east Queensland floods”, available at: http://eprints.qut.edu.au/48241 (accessed June 18, 2013).