Forty Thousand Fake Twitter Profiles: A Computational Framework for the Visual Analysis of Social Media Propaganda

Author:

George Noel1,Sham Azhar1,Ajith Thanvi1,Bastos Marco12ORCID

Affiliation:

1. University College Dublin, School of Information and Communication Studies, Belfield, Ireland

2. Department of Media, Culture and Creative Industries, City, University of London, London, UK

Abstract

Successful disinformation campaigns depend on the availability of fake social media profiles used for coordinated inauthentic behavior with networks of false accounts including bots, trolls, and sockpuppets. This study presents a scalable and unsupervised framework to identify visual elements in user profiles strategically exploited in nearly 60 influence operations, including camera angle, photo composition, gender, and race, but also more context-dependent categories like sensuality and emotion. We leverage Google’s Teachable Machine and the DeepFace Library to classify fake user accounts in the Twitter Moderation Research Consortium database, a large repository of social media accounts linked to foreign influence operations. We discuss the performance of these classifiers against manually coded data and their applicability in large-scale data analysis. The proposed framework demonstrates promising results for the identification of fake online profiles used in influence operations and by the cottage industry specialized in crafting desirable online personas.

Funder

University College Dublin

Google Cloud for Research Program

Conselho Nacional de Desenvolvimento CientÃ-fico e TecnolÃgico

Publisher

SAGE Publications

Reference95 articles.

1. Agarwal V. (2018). Deep face quality assessment (arXiv:1811.04346). arXiv. https://doi.org/10.48550/arXiv.1811.04346

2. Antoniadis P. (2022, February 19). Image processing: Occlusions | Baeldung on computer science. https://www.baeldung.com/cs/image-processing-occlusions

3. Face-ism: Five studies of sex differences in facial prominence.

4. Acting the Part

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3