Author:
Fazli Ali,Kazemi Mohammad Hosein
Abstract
Purpose
This paper aims to propose a new linear parameter varying (LPV) controller for the robot tracking control problem. Using the identification of the robot dynamics in different work space points about modeling trajectory based on the least square of error algorithm, an LPV model for the robotic arm is extracted.
Design/methodology/approach
Parameter set mapping based on parameter component analysis results in a reduced polytopic LPV model that reduces the complexity of the implementation. An approximation of the required torque is computed based on the reduced LPV models. The state-feedback gain of each zone is computed by solving some linear matrix inequalities (LMIs) to sufficiently decrease the time derivative of a Lyapunov function. A novel smoothing method is used for the proposed controller to switch properly in the borders of the zones.
Findings
The polytopic set of the resulting gains creates the smooth switching polytopic LPV (SS-LPV) controller which is applied to the trajectory tracking problem of the six-degree-of-freedom PUMA 560 robotic arm. A sufficient condition ensures that the proposed controller stabilizes the polytopic LPV system against the torque estimation error.
Practical implications
Smoothing of the switching LPV controller is performed by defining some tolerances and creating some quasi-zones in the borders of the main zones leading to the compressed main zones. The proposed torque estimation is not a model-based technique; so the model variation and other disturbances cannot destroy the performance of the suggested controller. The proposed control scheme does not have any considerable computational load, because the control gains are obtained offline by solving some LMIs, and the torque computation is done online by a simple polytopic-based equation.
Originality/value
In this paper, a new SS-LPV controller is addressed for the trajectory tracking problem of robotic arms. Robot workspace is zoned into some main zones in such a way that the number of models in each zone is almost equal. Data obtained from the modeling trajectory is used to design the state-feedback control gain.
Reference43 articles.
1. A new polytopic modeling with uncertain vertices and robust control of robot manipulators;Journal of Control, Automation and Electrical Systems,2017
2. Uncertain polytopic LPV modelling of robot manipulators and trajectory tracking;International Journal of Control, Automation and Systems,2017
3. H ∞ state feedback LPV control of a SCARA robot,2007
4. The explicit dynamic model and inertial parameters of the PUMA 560 arm,1986
5. Toward switching/interpolating LPV control: a review;Annual Reviews in Control,2022
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献