A functional methodology on the manufacturing of customized polymeric cranial prostheses from CAT using SPIF

Author:

Centeno GabrielORCID,Morales-Palma Domingo,Gonzalez-Perez-Somarriba Borja,Bagudanch Isabel,Egea-Guerrero Juan José,Gonzalez-Perez Luis Miguel,García-Romeu María Luisa,Vallellano Carpóforo

Abstract

Purpose This paper aims to propose a functional methodology to produce cranial prostheses in polymeric sheet. Within the scope of rapid prototyping technologies, the single-point incremental forming (SPIF) process is used to demonstrate its capabilities to perform customized medical parts. Design/methodology/approach The methodology starts processing a patient’s computerized axial tomography (CAT) and follows with a computer-aided design and manufacture (CAD/CAM) procedure, which finally permits the successful manufacturing of a customized prosthesis for a specific cranial area. Findings The formability of a series of polymeric sheets is determined and the most restrictive material among them is selected for the fabrication of a specific partial cranial prosthesis following the required geometry. The final strain state at the outer surface of the prosthesis is analysed, showing the high potential of SPIF in manufacturing individualized cranial prostheses from polymeric sheet. Originality/value This paper proposes a complete methodology to design and manufacture polymer customized cranial prostheses from patients’ CATs using the novel SPIF technology. This is an application of a new class of materials to the manufacturing of medical prostheses by SPIF, which to this purpose has been mainly making use of metallic materials so far. Despite the use of polymers to this application is still to be validated from a medical point of view, transparent prostheses can already be of great interest in medical or engineering schools for teaching and research purposes.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference29 articles.

1. Single point incremental forming of a facial implant;Prosthetics and Orthotics International,2014

2. Fracture in forming;Journal of Material Processing Technology,1996

3. Manufacturing of thermoplastic cranial prosthesis by incremental sheet forming,2014

4. Forming force and temperature effects on single point incremental forming of polyvinylchloride;Journal of Material Processing Technology,2015

5. Manufacturing of polymeric biocompatible cranial geometry by single point incremental forming;Procedia Engineering,2015

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3