Abstract
PurposeThe primary focus of this study is to tackle a critical industry issue concerning energy inefficiency. This is achieved through an investigation into enhancing heat transfer in solar radiation phenomena on a curved surface. The problem formulation of governing equations includes the combined effects of thermal relaxation, Newtonian heating, radiation mechanism, and Darcy-Forchheimer to enhance the uniqueness of the model. This research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilizing the above-mentioned phenomenon with a purpose of advancing thermal technology. A mixture of silicon dioxide (SiO_2)\ and Molybdenum disulfide (MoS_2) is considered for the nanoparticle’s thermal propagation in base solvent propylene glycol. The simulation of the modeled equations is solved using the Shifted Legendre collocation scheme (SLCS). The findings show that, the solar radiation effects boosted the heating performance of the hybrid nanofluid. Furthermore, the heat transmission progress increases against the curvature and thermal relaxation parameter.Design/methodology/approachShifted Legendre collocation scheme (SLCS) is utilized to solve the simulation of the modeled equations.FindingsThe findings show that, the solar radiation effects boosted the heating performance of the hybrid nanofluid. The heat transmission progress increase against the curvature and thermal relaxation parameter.Originality/valueThis research employs the Cattaneo–Christov heat theory model to investigate the thermal flux via utilizing the above-mentioned phenomenon with a purpose of advancing thermal technology.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献