Money laundering control in Mexico

Author:

Martínez-Sánchez José Francisco,Cruz-García Salvador,Venegas-Martínez Francisco

Abstract

Purpose This paper is aimed at developing a regression tree model useful to quantify the Money Laundering (ML) risk associated to a customer profile and his contracted products (customer’s inherent risk). ML is a risk to which different entities are exposed, but mainly the financial ones because of the nature of their activity, so that they are legally obliged to have an appropriate methodology to analyze and assess such a risk. Design/methodology/approach This paper uses the technique of regression trees to identify, measure and quantify the ML customer’s inherent risk. Findings After classifying customers as high- or low-risk based on a probability threshold of 0.5, this study finds that customers with 56 months or more of seniority are more risky than those with less seniority; the variables “contracted product” and “customer seniority” are statistically significant; the variables origin, legal entity and economic activity are not statistically significant for classifying customers; institution collection, business products and individual product are the most risky; and the percentage of effectiveness, suggested by the decision tree technique, is around 89.5 per cent. Practical implications In the daily practice of ML risk management, the two main issues to be considered are: 1) the knowledge of the customer, and 2) the detection of his inherent risk elements. Originality/value Information from the customer portfolio and his transaction profile is analyzed through BigData and data mining.

Publisher

Emerald

Subject

Law,General Economics, Econometrics and Finance,Public Administration

Reference11 articles.

1. Prevención del lavado de dinero y financiamiento al terrorismo: identificación y evaluación de riesgos en lasentidadesfinancierasmexicanas,2017

2. CNBV (2017), “Guía Para la elaboración de unametodología de evaluación de riesgos en materia de prevención de operaciones con recursos de procedenciailícita y financiamiento al terrorismo”, SHCP, available at: www.gob.mx/cnbv/articulos/guia-para-la-elaboracion-de-una-metodologia-de-evaluacion-de-riesgos-en-materia-de-pld-ft-109268?idiom=es

3. CNBV (2018), “Vicepresidencia de supervisión de procesos preventivos. Lavado de dinero: Concepto”, 30 de marzo de 2018, available at: www.cnbv.gob.mx/PrevencionDeLavadoDeDinero/Documents/VSPP_Lavado%20de%20Dinero%20%20%20130701.pdf

4. An exploratory technique for investigating large quantities of categorical data;Applied Statistics,1980

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3