Author:
Youssef Bekach,Bouchra Frikh,Brahim Ouhbi
Publisher
Springer Nature Switzerland
Reference23 articles.
1. Kute, D.V., et al.: Deep learning and explainable artificial intelligence techniques applied for detecting money laundering–a critical review. IEEE Access (2021)
2. Salehi, A., Ghazanfari, M., Fathian, M.: Data mining techniques for anti money laundering. Int. J. Appl. Eng. Res. 12(20), 10084–10094 (2017)
3. Alkhalili, M., Qutqut, M.H., Almasalha, F.: Investigation of applying machine learning for watch-list filtering in anti-money laundering. IEEE Access 9, 18481–18496 (2021)
4. Ketenci, U.G., et al.: A time-frequency based suspicious activity detection for anti-money laundering. IEEE Access 9, 59957–59967 (2021)
5. Martínez-Sánchez, J.F., Cruz-García, S., Venegas-Martínez, F.: Money laundering control in Mexico: a risk management approach through regression trees (data mining). J. Money Laundering Control (2020)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Load Forecasting Using Random Forest Regression Algorithm in Machine Learning;2024 International Conference on Science Technology Engineering and Management (ICSTEM);2024-04-26
2. Enhancing Money Laundering Detection Through Machine Learning;AI and Blockchain Applications in Industrial Robotics;2023-12-29