Optimum external shading system for counterbalancing glare probability and daylight illuminance in Sydney's residential buildings

Author:

Sorooshnia Ehsan,Rashidi Maria,Rahnamayiezekavat Payam,Rezaei Fatemeh,Samali Bijan

Abstract

PurposeOptimisation of daylight admission through window is crucial for alleviating glare while maintaining useful daylight levels in order to enhance occupants' health, visual comfort and moderating lighting energy consumption. Amongst various solutions, fixed external shade is an affordable solution for housing spaces that need to be sophisticatedly designed, especially during the period of increasing home spaces as working environments. In the humid subtropical region, daylight control plays an important role in indoor comfort, particularly with areas with a high window to wall ratio (WWR). Due to the insufficient amount of such study on non-office spaces in Australia, shading-related standards are not addressed in Australian building codes.Design/methodology/approachThe chosen methodology for the research is a quantitative data collection and analysis through field measurement and simulation simultaneously. The first step is a multi-objective optimisation of shading elements through a non-dominated sorting genetic algorithm (NSGA-II) on parametric modelling via Rhino3D CAD and simulation engines (DIVA and ClimateStudio). In the second phase, the Pareto front solutions are validated by experimental measurements within a room with a single north-facing window (the most probable for the daytime glare in Sydney) for the seven most common local window configurations.FindingsThrough the simulation of ten genes, 1,560 values and 2.4 × 1,019 of search space, this study found an optimum shade for each local common window layout, resulted in +22% in (UDI) and −16% in views with discomfort glare on average. Moreover, an all-purpose polygonal shade showed an average of 4.6% increase in UDI and a 5.83% decrease in the percentage of views with discomfort glare.Research limitations/implicationsThe findings are subject to the room dimensions, window dimensions and layouts, and orientation of windows for selected residential buildings in Sydney.Originality/valueThe study contributes to the development of highly accurate fixed external shading systems with rectangular and tapered-form external shapes. A real-time measurement by luminance-metre sensors and HQ cameras located at six eye levels is conducted to corroborate simulation results of the visual comfort.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3