Optimizing the View Percentage, Daylight Autonomy, Sunlight Exposure, and Energy Use: Data-Driven-Based Approach for Maximum Space Utilization in Residential Building Stock in Hot Climates

Author:

Kamel Tarek M.1,Khalil Amany2ORCID,Lakousha Mohammed M.3ORCID,Khalil Randa2ORCID,Hamdy Mohamed4ORCID

Affiliation:

1. Department of Architecture and Environmental Design, Arab Academy for Science and Technology, Cairo 2033, Egypt

2. Department of Architectural Engineering, Faculty of Engineering & Technology, Future University in Egypt (FUE), Cairo1835, Egypt

3. Department of Architecture and Environmental Design, Arab Academy for Science and Technology, South Valley P.O. Box 11, Aswan 81511, Egypt

4. Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

Abstract

This paper introduces a comprehensive methodology for creating diverse layout generation configurations, aiming to address limitations in existing building optimization studies that rely on simplistic hypothetical buildings. This study’s objective was to achieve an optimal balance between minimizing the energy use intensity (EUI) in kWh/m2, maximizing the views percentages to the outdoor (VPO), achieving spatial daylight autonomy (sDA), and minimizing annual sunlight exposure (ASE). To ensure the accuracy and reliability of the simulation, the research included calibration and validation processes using the Ladybug and Honeybee plugins, integrated into the Grasshopper platform. These processes involved comparing the model’s performance against an existing real-world case. Through more than 1500 iterations, the study extracted three multi-regression equations that enabled the calculation of EUI in kWh/m2. These equations demonstrated the significant influence of the window-to-wall ratio (WWR) and space proportions (SP) on the EUI. By utilizing these multi-regression equations, we were able to fine-tune the design process, pinpoint the optimal configurations, and make informed decisions to minimize energy consumption and enhance the sustainability of residential buildings in hot arid climates. The findings indicated that 61% of the variability in energy consumption can be attributed to changes in the WWR, as highlighted in the first equation. Meanwhile, the second equation suggested that around 27% of the variability in energy consumption can be explained by alterations in space proportions, indicating a moderate correlation. Lastly, the third equation indicated that approximately 89% of the variability in energy consumption was associated with changes in the SP and WWR, pointing to a strong correlation between SP, WWR, and energy consumption. The proposed method is flexible to include new objectives and variables in future applications.

Funder

Norwegian University of Science and Technology

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3