Magnetic alignment technology for wafer bonding

Author:

Ye Lezhi,Song Xuanjie,Yue Chang

Abstract

Purpose Wafer bonding is a key process for 3 D advanced packaging of integrated circuits. It requires very high accuracy for the wafer alignment. To solve the problems of large movement stroke, position calibration error and low production efficiency in optical alignment, this paper aims to propose a new wafer magnetic alignment technology (MAT) which is based on tunnel magneto resistance effect. MAT can realize micro distance alignment and reduces the design and manufacturing difficulty of wafer bonding equipment. Design/methodology/approach The current methods and existing problems of wafer optical alignment are introduced, and the mechanism and realization process of wafer magnetic alignment are proposed. Micro magnetic column (MMC) marks are designed on the wafer by the semiconductor manufacturing process. The mathematical model of the space magnetic field of the MMC is established, and the magnetic field distribution of the MMC alignment is numerically simulated and visualized. The relationship between the alignment accuracy and the MMC diameter, MMC remanence, MMC thickness and sensor measurement height was studied. Findings The simulation analysis shows that the overlapping double MMCs can align the wafer with accuracy within 1 µm and can control the bonding distance within the micrometer range to improve the alignment efficiency. Originality/value Magnetic alignment technology provides a new idea for wafer bonding alignment, which is expected to improve the accuracy and efficiency of wafer bonding.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference20 articles.

1. Fabrication of novel MEMS microgrippers by deep reactive ion etching with metal hard mask;Journal of Microelectromechanical Systems,2017

2. The 3-D interconnect technology landscape;IEEE Design & Test,2016

3. High-speed ultra-accurate direct C2W bonding,2020

4. Wafer and die bonding technologies for 3D integration,2008

5. Spintronics, magnetoresistive heads, and the emergence of the digital world;Proceedings of the IEEE,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3