Impact of information consistency in online reviews on consumer behavior in the e-commerce industry: a text mining approach

Author:

Li QinglongORCID,Park JaeseungORCID,Kim JaekyeongORCID

Abstract

PurposeThe current study investigates the impact on perceived review helpfulness of the simultaneous processing of information from multiple cues with various central and peripheral cue combinations based on the elaboration likelihood model (ELM). Thus, the current study develops and tests hypotheses by analyzing real-world review data with a text mining approach in e-commerce to investigate how information consistency (rating inconsistency, review consistency and text similarity) influences perceived helpfulness. Moreover, the role of product type is examined in online consumer reviews of perceived helpfulness.Design/methodology/approachThe current study collected 61,900 online reviews, including 600 products in six categories, from Amazon.com. Additionally, 51,927 reviews were filtered that received helpfulness votes, and then text mining and negative binomial regression were applied.FindingsThe current study found that rating inconsistency and text similarity negatively affect perceived helpfulness and that review consistency positively affects perceived helpfulness. Moreover, peripheral cues (rating inconsistency) positively affect perceived helpfulness in reviews of experience goods rather than search goods. However, there is a lack of evidence to demonstrate the hypothesis that product types moderate the effectiveness of central cues (review consistency and text similarity) on perceived helpfulness.Originality/valuePrevious studies have mainly focused on numerical and textual factors to investigate the effect on perceived helpfulness. Additionally, previous studies have independently confirmed the factors that affect perceived helpfulness. The current study investigated how information consistency affects perceived helpfulness and found that various combinations of cues significantly affect perceived helpfulness. This result contributes to the review helpfulness and ELM literature by identifying the impact on perceived helpfulness from a comprehensive perspective of consumer review and information consistency.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference58 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3