Software warranty cost optimization under imperfect debugging

Author:

Verma Vibha,Anand Sameer,Aggarwal Anu Gupta

Abstract

PurposeThe purpose of this paper is to identify and quantify the key components of the overall cost of software development when warranty coverage is given by a developer. Also, the authors have studied the impact of imperfect debugging on the optimal release time, warranty policy and development cost which signifies that it is important for the developers to control the parameters that cause a sharp increase in cost.Design/methodology/approachAn optimization problem is formulated to minimize software development cost by considering imperfect fault removal process, faults generation at a constant rate and an environmental factor to differentiate the operational phase from the testing phase. Another optimization problem under perfect debugging conditions, i.e. without error generation is constructed for comparison. These optimization models are solved in MATLAB, and their solutions provide insights to the degree of impact of imperfect debugging on the optimal policies with respect to software release time and warranty time.FindingsA real-life fault data set of Radar System is used to study the impact of various cost factors via sensitivity analysis on release and warranty policy. If firms tend to provide warranty for a longer period of time, then they may have to bear losses due to increased debugging cost with more number of failures occurring during the warrantied time but if the warranty is not provided for sufficient time it may not act as sufficient hedge during field failures.Originality/valueEvery firm is fighting to remain in the competition and expand market share by offering the latest technology-based products, using innovative marketing strategies. Warranty is one such strategic tool to promote the product among masses and develop a sense of quality in the user’s mind. In this paper, the failures encountered during development and after software release are considered to model the failure process.

Publisher

Emerald

Subject

Strategy and Management,General Business, Management and Accounting

Reference80 articles.

1. Reliability analysis for multi-release open-source software systems with change point and exponentiated Weibull fault reduction factor;Life Cycle Reliability and Safety Engineering,2017

2. Multi-release software reliability growth assessment: an approach incorporating fault reduction factor and imperfect debugging;International Journal of Mathematics in Operational Research,2019

3. 2-Dimensional multi-release software reliability modelling considering fault reduction factor under imperfect debugging;Ingeniería Solidaria ISSN online 2357-6014 ISSN print 1900-3102,2018

4. Bittanti, S., Bolzern, P., Pedrotti, E., Pozzi, M. and Scattolini, R. (1988), “A flexible modelling approach for software reliability growth”, in Bittanti, S. (Ed.), Software Reliability Modelling and Identification, Lecture Notes in Computer Science, Vol. 341, Springer, Berlin and Heidelberg.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3