Author:
Tian Qing,Yeh Chun-Wu,Fang Chih-Chiang
Abstract
In this study, an imperfect debugging software reliability growth model (SRGM) with Bayesian analysis was proposed to determine an optimal software release in order to minimize software testing costs and also enhance the practicability. Generally, it is not easy to estimate the model parameters by applying MLE (maximum likelihood estimation) or LSE (least squares estimation) with insufficient historical data. Therefore, in the situation of insufficient data, the proposed Bayesian method can adopt domain experts’ prior judgments and utilize few software testing data to forecast the reliability and the cost to proceed with the prior analysis and the posterior analysis. Moreover, the debugging efficiency involves testing staff’s learning and negligent factors, and therefore, the human factors and the nature of debugging process are taken into consideration in developing the fundamental model. Based on this, the estimation of the model’s parameters would be more intuitive and can be easily evaluated by domain experts, which is the major advantage for extending the related applications in practice. Finally, numerical examples and sensitivity analyses are performed to provide managerial insights and useful directions for software release strategies.
Funder
Guang-dong Basic and Applied Basic Research Foundation
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献