Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors

Author:

Tian Qing,Yeh Chun-Wu,Fang Chih-Chiang

Abstract

In this study, an imperfect debugging software reliability growth model (SRGM) with Bayesian analysis was proposed to determine an optimal software release in order to minimize software testing costs and also enhance the practicability. Generally, it is not easy to estimate the model parameters by applying MLE (maximum likelihood estimation) or LSE (least squares estimation) with insufficient historical data. Therefore, in the situation of insufficient data, the proposed Bayesian method can adopt domain experts’ prior judgments and utilize few software testing data to forecast the reliability and the cost to proceed with the prior analysis and the posterior analysis. Moreover, the debugging efficiency involves testing staff’s learning and negligent factors, and therefore, the human factors and the nature of debugging process are taken into consideration in developing the fundamental model. Based on this, the estimation of the model’s parameters would be more intuitive and can be easily evaluated by domain experts, which is the major advantage for extending the related applications in practice. Finally, numerical examples and sensitivity analyses are performed to provide managerial insights and useful directions for software release strategies.

Funder

Guang-dong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Software Release Time and Software Patch Release Time Based on Testing Effort and Warranty;Journal of Reliability and Statistical Studies;2024-06-05

2. An Imperfect Debugging Non-Homogeneous Poisson Process Software Reliability Model Based on a 3-Parameter S-Shaped Function;International Journal of Software Engineering and Knowledge Engineering;2024-04-01

3. Research on Bayesian Network garbage classification based on multi-source information fusion;Proceedings of the 2023 7th International Conference on Big Data and Internet of Things;2023-08-11

4. Optimization of Software Test Scheduling under Development of Modular Software Systems;Symmetry;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3