Fuel vehicles or new energy vehicles? A study on the differentiation of vehicle consumer demand based on online reviews

Author:

Wang XiaoguangORCID,Cheng YueORCID,Lv Tao,Cai Rongjiang

Abstract

PurposeThe authors hope to filter valuable information from online reviews, obtain objective and accurate information about the demands of auto consumers and help auto companies develop more reasonable production and marketing strategies for healthy and sustainable development. This paper aims to discuss the aforementioned objectives.Design/methodology/approachThe authors collected review data from online automotive forums and generated a corpus after pre-processing. Then, the authors extracted consumer demands and topics using the LDA model. Finally, the authors used a trained Word2vec tool to extend the consumer demand topics.FindingsDifferent types of vehicle consumers have the same demands, such as “Space,” “Power Performance,” and “Brand Comparison,” and distinct demands, such as “Appearance,” “Safety,” “Service,” and “New Energy Features”; consumers who buy new energy vehicles are still accustomed to comparing with the brands or models of fuel vehicles; new energy vehicles consumers pay more attention to services and service quality during the purchasing and using process.Research limitations/implicationsThe development time of new energy vehicles is relatively short, with some models being available for only one year or even six months. The smaller amount of available data may impact the applicability of topic models. The sample size, especially for new energy vehicles, needs to be increased to improve the general applicability of topic models further.Practical implicationsFirst, this measure helps online review websites improve their existing review publication mechanisms, enhance the overall quality of online review content, increase user traffic and promote the healthy development of online review websites. Second, this allows for timely adjustments in future product production and sales plans and further enhances automotive companies' ability to leverage online reviews for Internet marketing.Originality/valueThe authors have improved the accuracy and stability of the fused topic model, providing a scientific and efficient research tool for multi-dimensional topic mining of online reviews. With the help of research results, consumers can more easily understand the discussion topics and thus filter out valuable reference information. As a result, automotive companies may gain information about consumer demands and product quality feedback and thus quickly adjust production and marketing strategies to increase sales and market share.

Publisher

Emerald

Subject

Marketing

Reference37 articles.

1. Boosting green cars retail in Malaysia: the influence of conditional value on consumers behavior;Journal of Distribution Science,2021

2. COVID-19 and the demand for online grocery shopping: empirical evidence from the Netherlands;Economist-Netherlands,2021

3. Latent dirichlet allocation;Journal of Machine Learning Research,2003

4. Examining the role of mobile self-efficacy in the word-of-mouth/mobile product reviews relationship;International Journal of E-Services and Mobile Applications,2018

5. Does online chatter matter for consumer behaviour? A priming experiment on organic food;International Journal of Consumer Studies,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3