Integration of JIT flexible manufacturing, assembly and disassembly using a simulation approach

Author:

Pisuchpen Roongrat

Abstract

PurposeIn the real world many companies combine the operations of manufacturing, assembly and disassembly. Thus, the integration of just‐in‐time FMS, FAS, and flexible disassembly system (DAS) models poses an interesting problem. The purpose of this paper is to provide major emphasis on a new simulation model for design and performance evaluation of a flexible assembly and disassembly system with dual Kanban under a stochastic system. This paper also primarily investigates the effect of varying the number of kanban cards, mean inter‐arrival time of demand and locations of the bottlenecks on the performance integration of JIT flexible manufacturing, assembly and disassembly systems.Design/methodology/approachSimulation is carried out in ARENA and data is analyzed using multivariate analysis of variance (MANOVA). This paper investigates the effect of varying number of kanban cards, mean inter‐arrival time of demand, and locations of the bottlenecks on the performance integration of JIT flexible manufacturing, assembly and disassembly systems. The performance measures that are simultaneously considered are the fill rate, work in process, and mean cycle time. This paper emphasizes that understanding the interactions between the variables and their effects on system performance is of utmost importance for managers in improving performance processes.FindingsIn manufacturing practice, there are many industrial units that represent the mixture of the referred three models. This paper presents a new simulation model for design and performance evaluation of a flexible assembly and disassembly system with dual kanban. The simulation results are statistically compared with MANOVA. MANOVA is used to perform the test with multiple objective functions, e.g. with the average production cycle time, percentage average fill rate, and work‐in‐process. The conclusion to be drawn is that minimized WIP can be obtained by higher percentage average fill rate, lower WIP, small average part cycles times, and increasing in kanban cards while simultaneously retaining full customer satisfaction.Originality/valueThe researcher presents the newly developed kanban system into the production system of JIT flexible manufacturing, assembly and disassembly system with simulation technique. Furthermore, by assigning time factors to the models, several performance measures can be easily computed. Then, the researcher tests the effect of the number of kanban card on integration of JIT flexible manufacturing, assembly and disassembly systems using a simulation approach, the simulation model is developed using the ARENA simulation package. The results are applied to a small case study. For a single product under the integration of JIT flexible manufacturing, assembly and disassembly systems, as the number of kanban cards increase, the fill rate along with work in process and the mean cycle time increases as well.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Establishing eco-friendly and lean environment by coordinating the concept of lean manufacturing and corporate social responsibility;13TH INTERNATIONAL SCIENTIFIC CONFERENCE ON AERONAUTICS, AUTOMOTIVE AND RAILWAY ENGINEERING AND TECHNOLOGIES (BulTrans-2021);2022

2. Rating Risk Factors Related to Dangerous Goods Transportation and Selecting an Ideal Warehouse Location;Cases on Supply Chain Management and Lessons Learned From COVID-19;2022

3. A road map for the implementation of integrated JIT-lean practices in Indian manufacturing industries using the best-worst method approach;Journal of Industrial and Production Engineering;2020-07-01

4. ARIMA-GMDH: a low-order integrated approach for predicting and optimizing the additive manufacturing process parameters;The International Journal of Advanced Manufacturing Technology;2019-11-26

5. Just in time elements extraction and prioritization for health care unit using decision making approach;International Journal of Quality & Reliability Management;2019-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3