Automatic inspection and strategy for surface defects in the PI coating process of TFT‐LCD panels

Author:

Lin Chern‐Sheng,Kuo Jung,Lin Chi‐Chin,Lay Yun‐Long,Shei Hung‐Jung

Abstract

PurposeThe purpose of this paper is to apply an on‐line automatic inspection and measurement of surface defect of thin‐film transistor liquid‐crystal display (TFT‐LCD) panels in the polyimide coating process with a modified template matching method and back propagation neural network classification method.Design/methodology/approachBy using the technique of searching, analyzing, and recognizing image processing methods, the target pattern image of TFT‐LCD cell defects can be obtained.FindingsWith template match and neural network classification in the database of the system, the program judges the kinds of the target defects characteristics, finds out the central position of cell defect, and analyzes cell defects.Research limitations/implicationsThe recognition speed becomes faster and the system becomes more flexible in comparison to the previous system. The proposed method and strategy, using unsophisticated and economical equipment, is also verified. The proposed method provides highly accurate results with a low‐error rate.Practical implicationsIn terms of sample training, the principles of artificial neural network were used to train the sample detection rate. In sample analysis, character weight was implemented to filter the noise so as to enhance discrimination and reduce detection.Originality/valueThe paper describes how pre‐inspection image processing was utilized in collaboration with the system to excel the inspection efficiency of present machines as well as for reducing system misjudgment. In addition, the measure for improving cell defect inspection can be applied to production line with multi‐defects to inspect and improve six defects simultaneously, which improves the system stability greatly.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3