Controlling the porosity of 316L stainless steel parts manufactured via the powder bed fusion process

Author:

AlFaify Abdullah,Hughes James,Ridgway Keith

Abstract

Purpose The pulsed-laser powder bed fusion (PBF) process is an additive manufacturing technology that uses a laser with pulsed beam to melt metal powder. In this case, stainless steel SS316L alloy is used to produce complex components. To produce components with acceptable mechanical performance requires a comprehensive understanding of process parameters and their interactions. This study aims to understand the influence of process parameters on reducing porosity and increasing part density. Design/methodology/approach The response surface method (RSM) is used to investigate the impact of changing critical parameters on the density of parts manufactured. Parameters considered include: point distance, exposure time, hatching distance and layer thickness. Part density was used to identify the most statistically significant parameters, before each parameter was analysed individually. Findings A clear correlation between the number and shape of pores and the process parameters was identified. Point distance, exposure time and layer thickness were found to significantly affect part density. The interaction between these parameters also critically affected the development of porosity. Finally, a regression model was developed and verified experimentally and used to accurately predict part density. Research limitations/implications The study considered a range of selected parameters relevant to the SS316L alloy. These parameters need to be modified for other alloys according to their physical properties. Originality/value This study is believed to be the first systematic attempt to use RSM for the design of experiments (DOE) to investigate the effect of process parameters of the pulsed-laser PBF process on the density of the SS316L alloy components.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference42 articles.

1. Predicting surface quality of γ-TiAl produced by additive manufacturing process using response surface method;Journal of Mechanical Science and Technology,2016

2. Numerical and experimental investigations on laser melting of stainless steel 316L metal powders;Journal of Manufacturing Processes,2014

3. Standard test method for density of powder metallurgy (PM) materials containing less than two percent porosity 1;ASTM B-311,2008

4. Optimization of fiber laser welding of DP980 steels using RSM to improve weld properties for formability;Journal of Materials Engineering and Performance,2016

5. Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants;Acta Biomaterialia,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3