Mitigation of Gas Porosity in Additive Manufacturing Using Experimental Data Analysis and Mechanistic Modeling

Author:

Sinha Satyaki1,Mukherjee Tuhin1ORCID

Affiliation:

1. Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA

Abstract

Shielding gas, metal vapors, and gases trapped inside powders during atomization can result in gas porosity, which is known to degrade the fatigue strength and tensile properties of components made by laser powder bed fusion additive manufacturing. Post-processing and trial-and-error adjustment of processing conditions to reduce porosity are time-consuming and expensive. Here, we combined mechanistic modeling and experimental data analysis and proposed an easy-to-use, verifiable, dimensionless gas porosity index to mitigate pore formation. The results from the mechanistic model were rigorously tested against independent experimental data. It was found that the index can accurately predict the occurrence of porosity for commonly used alloys, including stainless steel 316, Ti-6Al-4V, Inconel 718, and AlSi10Mg, with an accuracy of 92%. In addition, experimental data showed that the amount of pores increased at a higher value of the index. Among the four alloys, AlSi10Mg was found to be the most susceptible to gas porosity, for which the value of the gas porosity index can be 5 to 10 times higher than those for the other alloys. Based on the results, a gas porosity map was constructed that can be used in practice for selecting appropriate sets of process variables to mitigate gas porosity without the need for empirical testing.

Publisher

MDPI AG

Reference84 articles.

1. Mukherjee, T., and DebRoy, T. (2023). Theory and Practice of Additive Manufacturing, John Wiley & Sons.

2. Additive manufacturing of metallic components–process, structure and properties;DebRoy;Prog. Mater. Sci.,2018

3. Mechanistic models for additive manufacturing of metallic components;Wei;Prog. Mater. Sci.,2021

4. Bhavar, V., Kattire, P., Patil, V., Khot, S., Gujar, K., and Singh, R. (2017). Additive Manufacturing Handbook, CRC Press.

5. New insights into the mechanism of ultrasonic atomization for the production of metal powders in additive manufacturing;Priyadarshi;Addit. Manuf.,2024

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3