The effect of support structures on maraging steel MS1 parts fabricated by selective laser melting at different building angles

Author:

Cao Qiqiang,Zhang Jiong,Chang Shuai,Fuh Jerry Ying Hsi,Wang Hao

Abstract

Purpose This study aims to further the understanding of support structures and the likely impacts on maraging steel MS1 parts fabricated by selective laser melting (SLM) at 45°, 60° and 75° building angles. Design/methodology/approach Two groups of samples, one group with support structures and the other group without support structures, were designed with the same specifications and printed under the same conditions by SLM at 45°, 60° and 75° building angles. Differences in dimensional accuracy, surface roughness, Vickers microhardness, residual stress and microstructure were compared between groups. Findings The results showed that with support structures, more accurate dimension and slightly higher Vickers microhardness could be obtained. Larger compressive stress dominated and was more uniformly distributed on the supporting surface. Without support structures, the dimension became more precise as the building angle increased and alternating compressive and tensile stress was unevenly distributed on the supporting surface. In addition, the surface roughness of the outer surface decreased with the increase of the built angle, regardless of the support structures. Furthermore, whether the building angle was 45°, 60° or 75°, the observed microstructures revealed that the support structures altered the orientation of the molten pool and the direction of grain growth. Originality/value This paper studies the influence of support structures on the workpieces printed at different building angles. Support structures affect the residual stress distribution, heat dissipation rate and microstructure of the parts, and thus affecting the printing quality. Therefore, it is necessary to balance the support strategy and printing quality to better apply or design the support structures in SLM.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3