Author:
Bai Yuchao,Yang Yongqiang,Xiao Zefeng,Wang Di
Abstract
Purpose
This paper aims to verify whether selective laser melting (SLM) could be used for manufacturing mold with conformal cooling channels and determine whether the mechanical properties development of SLM manufacturing maraging steel mold would be beneficial to improve the quality of mold.
Design/methodology/approach
A series of block specimens and cylindrical tensile specimens are manufactured by SLM, and then are heat treated by solution treatment (ST) and solution treatment + aging treatment (ST + AT), respectively. The development of microstructure, microhardness and tensile strength of specimens is investigated. Then, a mold with conformal cooling channels is designed and manufactured by SLM and machined after ST with microhardness decreasing.
Findings
The morphology of microstructure varies widely under different heat treatment. The microhardness and tensile strength decrease after ST with cellular structure broken, which is conducive to mechanical finishing for mold to improve surface accuracy. After that, the hardness and strength of the mold increase significantly by AT with the precipitation of Ni3Mo, Fe2Mo and Ni3Ti particles. The maraging steel mold with conformal cooling channels can be manufactured by SLM successfully. And the surface accuracy of mold could be improved easily by machining.
Originality/value
Compared with the traditional mold with simple cooling channels, the mold with conformal cooling channels can be manufactured by SLM directly. The hardness of maraging steel mold manufactured by SLM can be reduced through ST, which is conducive to mechanical finishing for overcoming the defect of low precision of SLM directly manufacturing mold. This provides a new way for manufacturing mold of high quality.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献