Author:
Yang Wei,Xu Linghui,Yu Linfan,Chen Yuting,Yan Zehao,Yang Canjun
Abstract
Purpose
Walking-aid exoskeletons can assist and protect effectively the group with lower limb muscle strength decline, workers, first responders and military personnel. However, there is almost no united control strategy that can effectively assist daily walking. This paper aims to propose a hybrid oscillators’ (HOs) model to adapt to irregular gait (IG) patterns (frequent alternation between walking and standing or rapid changing of walking speed, etc.) and generate compliant and no-delay assistive torque.
Design/methodology/approach
The proposed algorithm, HOs, combines adaptive oscillators (AOs) with phase oscillator through switching assistive mode depending on whether or not the AOs' predicting error of hip joint degree is exceeded our expectation. HOs can compensate for delay by predicting gait phase when in AOs mode. Several treadmill and free walking experiments are designed to test the adaptability and effectiveness of HOs model under IG.
Findings
The experimental results show that the assistive strategy based on the HOs is effective under IG patterns, and delay is compensated totally under quasiperiodic gait conditions where a smoother human–robot interaction (HRI) force and the reduction of HRI force peak are observed. Delay compensation is found very effective at improving the performance of the assistive exoskeleton.
Originality/value
A novel algorithm is proposed to improve the adaptability of a walking assist hip exoskeleton in daily walking as well as generate compliant, no-delay assistive torque when converging.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献