Self-protective motion planning for mobile manipulators in a dynamic door-closing workspace

Author:

Liu Chuande,Gao Bingtuan,Yu Chuang,Tapus Adriana

Abstract

Purpose Many work conditions require manipulators to open cabinet doors and then gain access to the desired workspace. However, after opening, the unlocked doors can easily close, interrupt a task and potentially break the operating end-effectors. This paper aims to address a manipulator's behavior planning problem for responding to a dynamic workspace released by door opening. Design/methodology/approach A dynamic model of the restricted workspace released by an unlocked door is established. As a whole system to treat, the interactions between the workspace and robot are analyzed by using a partially observable Markov decision process. A self-protective policy decision executed as a belief tree is proposed. To respond to the policy, this study has designed three types of actions: stay on guard in the workspace, using an elbow joint to defense the door and linear escape out of the workspace for self-protection by observing collision risk levels to trigger them. Finally, this study proposes self-protective motion controllers based on risk time optimization to act to the planned actions. Findings The elbow defense could balance robotic safety and work efficiency by interrupting the end-effector's work and using the elbow joint to prevent the door-closing in an active collision way. Compared with the stay and escape action, the advantage of the elbow defense is having a predictable performance to quick callback the interrupted work after the risk was relieved. Originality/value This work provides guidance for the safe operation of a class of robot operations and the upgrade of motion planning.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference24 articles.

1. Learning manipulation actions from a few demonstrations,2013

2. Automated door opening scheme for non-holonomic mobile manipulator,2013

3. Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns;Autonomous Robots,2013

4. Human-like reflexes for robotic manipulation using leaky integrate-and-fire neurons,2010

5. Beer me, robot (2010), “PR2 robot fetches beer from the refrigerator”, Willow Garage Inc., available at: www.willowgarage.com/blog/2010/07/06/beer-me-robot

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3