Parametric analysis of entropy generation due to laminar developing mixed convection between differentially heated isothermal vertical parallel plates

Author:

Mokheimer Esmail M.A.

Abstract

PurposeThe aim of this article is to present the results of a parametric analysis of the entropy generation due to mixed convection in the entry‐developing region between two differentially heated isothermal vertical plates.Design/methodology/approachThe entropy generation was estimated via a numerical solution of the mass, momentum and energy conservation equations governing the flow and heat transfer in the vertical channel between the two parallel plates. The resultant temperature and velocity profiles were used to estimate the entropy generation and other heat transfer parameters over a wide range of the operating parameters. The investigated parameters include the buoyancy parameter (Gr/Re), Eckert number (Ec), Reynolds number (Re), Prandtl number (Pr) and the ratio of the dimensionless temperature of the two plates (θT).FindingsThe optimum values of the buoyancy parameter (Gr/Re) optimum at which the entropy generation assumes its minimum for the problem under consideration have been obtained numerically and presented over a wide range of the other operating parameters. The effect of the other operating parameters on the entropy generation is presented and discussed as well.Research limitations/implicationsThe results of this investigation are limited to the geometry of vertical channel parallel plates under isothermal boundary conditions. However, the concept of minimization of entropy generation via controlling the buoyancy parameter is applicable for any other geometry under any other thermal boundary conditions.Practical implicationsThe results presented in this paper can be used for optimum designs of heat transfer equipment based on the principle of entropy generation minimization with particular focus on the optimum design of plate and frame heat exchanger and the optimization of electronic packages and stacked packaging of laminar‐convection‐cooled printed circuits.Originality/valueThis paper introduces the entropy generation minimization via controlling the operating parameters and clearly identifies the optimum buoyancy parameter (Gr/Re) at which entropy generation assumes its minimum under different operating conditions.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3