Developing Flow and Flow Reversal in a Vertical Channel With Asymmetric Wall Temperatures

Author:

Aung Win1,Worku G.2

Affiliation:

1. Division of Chemical, Biochemical and Thermal Engineering, National Science Foundation; and Department of Mechanical Engineering, Howard University, Washington, D.C.

2. Grove Engineering Inc., Gaithersburg, MD

Abstract

Numerical results are presented for the effects of buoyancy on the hydrodynamic and thermal parameters in the laminar, vertically upward flow of a gas in a parallel-plate channel. Solutions of the governing parabolic equations are obtained by the use of an implicit finite difference technique coupled with a marching procedure. It is found that buoyancy dramatically increases the hydrodynamic entry length but diminishes the thermal development distance. At a fixed wall temperature difference ratio, buoyancy enhances the heat transfer on the hot wall but has little impact on the cool wall heat transfer. Flow reversal is observed in some cases. Based on an analytical solution for fully developed flow, criteria for the occurrence of flow reversal are presented. The present numerical solutions yield results that asymptotically approach those from the analytical solution.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 200 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3