Augmented reality-assisted gesture-based teleoperated system for robot motion planning

Author:

Salman Ahmed Eslam,Roman Magdy Raouf

Abstract

Purpose The study proposed a human–robot interaction (HRI) framework to enable operators to communicate remotely with robots in a simple and intuitive way. The study focused on the situation when operators with no programming skills have to accomplish teleoperated tasks dealing with randomly localized different-sized objects in an unstructured environment. The purpose of this study is to reduce stress on operators, increase accuracy and reduce the time of task accomplishment. The special application of the proposed system is in the radioactive isotope production factories. The following approach combined the reactivity of the operator’s direct control with the powerful tools of vision-based object classification and localization. Design/methodology/approach Perceptive real-time gesture control predicated on a Kinect sensor is formulated by information fusion between human intuitiveness and an augmented reality-based vision algorithm. Objects are localized using a developed feature-based vision algorithm, where the homography is estimated and Perspective-n-Point problem is solved. The 3D object position and orientation are stored in the robot end-effector memory for the last mission adjusting and waiting for a gesture control signal to autonomously pick/place an object. Object classification process is done using a one-shot Siamese neural network (NN) to train a proposed deep NN; other well-known models are also used in a comparison. The system was contextualized in one of the nuclear industry applications: radioactive isotope production and its validation were performed through a user study where 10 participants of different backgrounds are involved. Findings The system was contextualized in one of the nuclear industry applications: radioactive isotope production and its validation were performed through a user study where 10 participants of different backgrounds are involved. The results revealed the effectiveness of the proposed teleoperation system and demonstrate its potential for use by robotics non-experienced users to effectively accomplish remote robot tasks. Social implications The proposed system reduces risk and increases level of safety when applied in hazardous environment such as the nuclear one. Originality/value The contribution and uniqueness of the presented study are represented in the development of a well-integrated HRI system that can tackle the four aforementioned circumstances in an effective and user-friendly way. High operator–robot reactivity is kept by using the direct control method, while a lot of cognitive stress is removed using elective/flapped autonomous mode to manipulate randomly localized different configuration objects. This necessitates building an effective deep learning algorithm (in comparison to well-known methods) to recognize objects in different conditions: illumination levels, shadows and different postures.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Reference65 articles.

1. Deep convolutional neural network classified the PNEUMONIA and coronavirus diseases (COVID-19) by softmax nonlinearity function;International Journal of Nonlinear Analysis Applications,2022

2. 2D object recognition: a comparative analysis of SIFT, SURF and ORB feature descriptors;Multimedia Tools and Applications,2021

3. A brief insight on magnetic resonance conditional neurosurgery robots;Annals of Biomedical Engineering,2022

4. A gesture-based telemanipulation control for a robotic arm with biofeedback-based grasp;Industrial Robot,2017

5. Effects of nonverbal communication on efficiency and robustness in human-robot teamwork,2005

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3