Friction characteristics of moving joint surface from the micro and macro scale

Author:

Hai Lixin,Gao Feng,Li Yan,Yang Bo,Zhu Yanyan

Abstract

Purpose The nonlinear friction disturbance of the moving joint surface of the feed system can lead to the residual vibration of the system, prolong the stability time of the system and reduce the motion precision and machining precision of the machine tool. This paper aims to concern the vibration between joint surfaces caused by nonlinear friction. Design/methodology/approach The model is established from the micro and macro scale based on the LuGre model. The friction characteristics of the moving joint surface are explored. The friction experiment of GCr15 pin and 45 steel disk is designed and the influence of lubrication condition, speed, acceleration and normal load on friction characteristics are studied. Findings Among the drive speed, damping and stiffness, the negative gradient effect of friction, which is characterized by the difference of static and dynamic friction coefficient Δµ, is the main cause of friction vibration between moving joint surfaces. Sufficient lubrication, a proper increase of speed and acceleration, a reasonable reduction of normal load can reduce the negative gradient effect, which can weaken the vibration caused by the nonlinear friction and improve the friction characteristics of the moving joint surface. Originality/value In the past studies, more attention has been paid to revealing the relationship between the relative speed and friction, while the acceleration is often ignored. The negative gradient effect of friction is improved in this paper by changing the contact conditions. Research findings of this paper effectively improve the friction characteristics of the moving interface and provide the basis for restraining the nonlinear vibration between the moving interfaces. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0476/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference16 articles.

1. Investigations on tribological behaviour of AA7075-TiO2 composites under dry sliding conditions;Industrial Lubrication and Tribology,2019

2. Nonsmooth analysis of three-dimensional slipping and rolling in the presence of dry friction;Nonlinear Dynamics,2019

3. A molecular dynamics study to predict the friction and wear behavior of carbon nanotube reinforced styrene-butadiene rubber;Proceedings of the Institution of Mechanical Engineers Part J:Engineering Tribology,2019

4. Effect of roughness on the wear behavior of HVOF coatings dry sliding against a friction material;Wear,2016

5. Study on the nature of stick-slip motion for high-precision table;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3