Investigations on tribological behaviour of AA7075-TiO2 composites under dry sliding conditions

Author:

S.V. Alagarsamy,M. Ravichandran

Abstract

Purpose Aluminium and its alloys are the most preferred material in aerospace and automotive industries because of their high strength-to-weight ratio. However, these alloys are found to be low wear resistance. Hence, the incorporation of ceramic particles with the aluminium alloy may be enhanced the mechanical and tribological properties. The purpose of this study is to optimize the specific wear rate and friction coefficient of titanium dioxide (TiO2) reinforced AA7075 matrix composites. The four wear control factors are considered, i.e. reinforcement (Wt.%), applied load (N), sliding velocity (m/s) and sliding distance (m). Design/methodology/approach The composites were fabricated through stir casting route with varying weight percentages (0, 5, 10 and 15 Wt.%) of TiO2 particulates. The mechanical properties of the composites were studied. The specific wear rate and friction coefficient of the newly prepared composites was determined by using a pin-on-disc apparatus under dry sliding conditions. Experiments were planned as per Taguchi’s L16 orthogonal design. Signal-to-noise ratio analysis was used to find the optimal combination of parameters. Findings The mechanical properties such as yield strength, tensile strength and hardness of the composites significantly improved with the addition of TiO2 particles. The analysis of variance result shows that the applied load and reinforcement Wt.% are the most influencing parameters on specific wear rate and friction coefficient during dry sliding conditions. The scanning electron microscope morphology of the worn surface shows that TiO2 particles protect the matrix from more removal of material at all conditions. Originality/value This paper provides a solution for optimal parameters on specific wear rate and friction coefficient of aluminium matrix composites (AMCs) using Taguchi methodology. The obtained results are useful in improving the wear resistance of the AA7075-TiO2 composites.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference23 articles.

1. Effect of graphite on tribological and mechanical properties of AA7075 composites;Tribology Transactions,2015

2. Investigations on dry sliding wear behavior of in situ casted AA7075–TiC metal matrix composites by using Taguchi technique;Materials and Design,2014

3. Optimization of abrasive wear performance in aluminium hybrid metal matrix composites using Taguchi-grey relational analysis;Journal of Engineering Tribology,2014

4. Optimization of tribological properties in aluminium hybrid metal matrix composites using gray-Taguchi method;Journal of Materials Engineering and Performance,2011

5. Optimization of friction and wear behaviour of Al7075-Al2O3-B4C metal matrix composites using Taguchi method;IOP Conference Series: Materials Science and Engineering,2018

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3