Investigating the wear performance of AZ91D magnesium composites with ZnO, MnO, and TiO2 nanoparticles

Author:

Gnanavelbabu AnnamalaiORCID,Vinothkumar ElayarasanORCID,Ross Nimel SwornaORCID,Prahadeeswaran MuthuORCID

Abstract

AbstractIn recent decades, there has been a notable advancement in the field of bioactive, biodegradable, and biocompatible metallic materials, particularly for applications in general surgery. Among these materials, magnesium alloy-based composites have gained popularity due to their excellent biological properties and adequate strength. However, their resistance to wear is still an area that requires further investigation. Therefore, this study examines the wear properties of stir-ultrasonic-squeeze-casted magnesium (AZ91D) composites, incorporating distinct nanoparticles such as ZnO, MnO, and TiO2. The Evaluation-based Distance from Average Solution (EDAS) approach is used to determine the optimal parameters. Additionally, an Analysis of Variance (ANOVA) is conducted to identify the crucial factors influencing the responses. The effect of process factors on the wear rate and Coefficient of Friction (COF) is then investigated using response surface plots. The confirmation assessments reveal that the optimal parameter conditions for the tribo process comprise a 50.0018 N applied load, a 1.4998 m/s sliding velocity, and the AZ91D + 1% TiO2 (ATO) composite utilization. The ANOVA findings demonstrate that the applied load significantly contributes to 67.3% of the wear performance. Subsequently, after determining the optimal condition, it is observed that the ATO composite, when exposed to temperatures above 150 °C, exhibits an abrupt increase in wear rate and COF due to the degradation of grain strength and the dissolution of the β-phase within the composite.

Funder

University of Johannesburg

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3